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GFDL's Ocean-Climate Models

in Service to NOAA and the World

« MOM series of models is widely used & will continue to be so
— MOMA4.1 had many active users worldwide
— MOMS5 is the latest public release of MOM (October, 2012)
— GOLD (GFDLU's isopycnal coordinate ocean) now incorporated into MOM6

— All GFDL ocean & climate model development is focused on MIOM6

« Aim for MOMBG is to capture the complete range of climatically
Important physical processes in the ocean, with robust
diagnostics, and effective and efficient numerics (Talk by Adcroft)

« Key element of all GFDL coupled climate models

« Used for important operational products in NOAA and abroad

— E.g., NCEP using MOMA4.1 in seasonal predictions; CM2.1 is a part of CFS2.0;
MOMS5 is currently being ported for use in NCEP/CFS3.0

— E.g., MOM4/MOMS5 used for operational and research applications in
Australia, Brazil, India, South Africa, ...
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The Ocean’s Role in Climate Change

Exploring the dynamics of Sea Level Rise Projecting sea-level rise is prominent in
NOAA's Next Generation Strategic Plan:

ESM2M & ESM2G — same atmosphere &
ecosystems, different ocean models.
Historical & Scenario-projected Steric Sea Level Rise
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Adaptation to Climate Change
Resilient Coastal Communities

ESM2G & ESM2M 1980-2000
Horizontal-Mean Ocean Temperature
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18% larger steric SLR in ESM2M

9% due to more & deeper heat uptake
7% due to warmer spun-up ocean
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Volume Mean Ocean Temperature [°C)

Sensitivity of the Ocean State and Steric Sea Level Rise

to Diapycnal Mixing in the Ocean

Coupled model ocean drift and
equilibrium bias are sensitive to the
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Horizontal Mean Ocean Temperature and Bias

Potential Temperature (°C)  Temperature Bias (°C)

with Various Added Ocean Diffusivities
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Sensitivity of Sea Level Rise to

Ocean Diapycnal Mixing

Steric Sea-Level Rise after 200 Years in 1%/year to 4x CO, Run, Relative to Control
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Adding diapycnal diffusion increases steric sea level rise both by increasing heat uptake
and by warming the ocean (warmer water expands more when heated).
Both the initial conditions and mixing during the run contribute significantly.
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Steric sea level studies

» Griffies and Greatbatch (2012):
— Developed a theoretical framework for global mean steric sea level.

— Emphasized role of ocean thermal expansion variations in determining how heating
and mixing impact steric sea level.

» Griffies + 40 co-authors (2014):
— Assessed sea level trends in 13 historically forced (CORE-II) global ocean-ice models.

— Models generally capture recent linear trends in West Pacific and North Atlantic
thermosteric sea level, both associated with natural variability in atmospheric forcing.

Observatlonal Estlmates of 1993- 2007 Thermosterlc Trends Mean of 13 CORE-forced Ocean Models
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Parameterization of ocean lee waves

Mesoscale eddies transmit energy to lee-waves at rough

bottom topography, which break and cause mixing Estimate of energy transferred

from eddies to lee-waves
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Parameterization of mixing by internal tides

<—> Surface Tide
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are developed in collaboration o 10thrcéntury

with academic partners in the
NOAA/NSF funded Internal
Wave Driven Mixing Climate
Process Team.
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Parameterization of mixing by internal tides
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Location of mixing matters to large-scale ocean and climate
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Global Mean Sea Level Rise (cm above 1992)

Coupling Dynamic Icesheets into GFDL'’s

Icesheet mass loss is the largest term and
largest source of uncertainty in 215t century
sea level rise projections.

GFDL is addressing this uncertainty by
developing a fully coupled and dynamically
evolving ice sheet modeling capability.

Sea Level Rise Scenarios from 2012 NOAA/CPO Report
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Coupled Ice-shelf-ocean Interaction

Antarctic mass balance
(1992-2005)

Ocean bottom temperature
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Dynamic Ice-shelf-ocean Interaction

Melt rates (m yr1) 8
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Dynamic Ice-shelf-ocean Interaction

Melt rates (m r-1) Rate of Change of
Y | Volume Above Flotation
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Basal conditions under ice streams

Inverted basal shear stress (kPa)
Pine Island Glacier
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Coupled Ice-shelf-ocean Interaction
IVIOIVI6 JZ deg Global Ocean I\/Iodel
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Coupled Ice-shelf-ocean Interaction
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Calving and Icebergs Climate Process Team

Antarctic mass loss
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Calving and Icebergs Climate Process Team

Ross Ice Shelf, Antarctica Jakovshavn Isbrae, Greenland

Larsen B Ice Shelf, Antarctica
N IS 4

BT N
— % \\‘_k?"
- ‘..-:’0 -
.- 4 =

Geophysical Fluid Dynamics Laboratory Review
May 20-22, 2014




Calving and Icebergs Climate Process Team
Iceergs tracks 1999-2010
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a The Antarctic Iceberg Tracking Database
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Calving and Icebergs Climate Process Team

Iceberg representation in GFDL climate models
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Calving and Icebergs Climate Process Team

Team Goals
* Princeton CICS (Lead) < Calving
« GFDL parameterizations
+ University of Alaska  * Iceberg-ocean

Interactions

« Compile available data
on calving and
iIcebergs

« University of Michigan
« Kansas University
 Penn State

Calving and Icebergs Climate Process Team Supported by NOAA/MAPP via NOAA/CPO

Geophysical Fluid Dynamics Laboratory Review

May 20-22, 2014



 GFDL has unified its ocean model development efforts
behind MOMS.

« Sea level rise exhibits significant sensitivity to the
representation of the ocean and ocean mixing.

 GFDL is developing and adopting increasingly physically
based representations of ocean mixing processes.
— Success also requires limiting spurious numerical mixing

 Coupled ice-sheet / ocean interactions are central to
societally important questions about Sea Level Rise.

— GFDL is at the forefront in the development of the required
fully coupled ice-sheet / ocean modeling capabilities.
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